GCT535: Sound Technology for Multimedia

Spatial Audio

Juhan Nam

Outlines

- Localization using HRTF
- Reverberation

Hearing Sound in Space

• We have different auditory experiences depending on where we listen to sound

Boston Symphony Hall

Lotte Concert Hall

Hearing Sound in Space

• Sound Localization

- Hear sound as a point source in 3-D space
- Possible with two ears and human body structure
- Panning (stereo), 3-D Sound

- Room Effect
 - Hear sound and its myriads of reflections
 - Determined by the room type: size, structure and materials
 - Reverberation effect

- Perception of Directions
 - A sound source arrives in each of two ears with differences in time and level
 - We call them ITD (inter-aural Time Difference) and IID (Inter-aural Intensity Difference)
 - IID is used as a main cue of direction above about 1.5 kHz
- Only the level and time differences are enough?

Head-Related Transfer Function (HRTF)

- A filter that characterizes how a sound arrives in the outer end of ear canal from the source
 - Measured from human body or dummy head
 - Determined by the refection on head, pinnae, torso or other body parts
 - Function of azimuth (horizontal angle), elevation (vertical angle) and frequency

Source: https://developers.google.com/vr/concepts/spatial-audio

HRTF Measurement

Measured Head-Related Impulse Responses

HRTF Measurement

Magnitude response of the HRIRs

Rendering Sound in 3-D Space

- Binaural Synthesis
 - 3D sound effects

- Typically run with headphones
- Applications: Game, VR
- Methods
 - Convolution with HRTFs: the IRs are typically several hundreds sample long
 - Modeling HRTFs with biquad filters (e.g. Prony's method)
- Issues
 - Standardization: dummy head
 - Individualization

- ARI
 - 85 subjects and 1550 source positions
 - <u>https://www.kfs.oeaw.ac.at/index.php?option=com_content&view=article&i</u>
 <u>d=608&Itemid=857&Iang=en</u>
- CIPIC
 - 45 subjects and 1250 source positions
 - o <u>http://interface.cipic.ucdavis.edu/sound/hrtf.html</u>
- IRCAM
 - 50 subjects and 187 source positions
 - <u>http://recherche.ircam.fr/equipes/salles/listen/</u>

HRTF Demos

- Virtual Barber Shop Hair Cut
 - o <u>https://www.youtube.com/watch?v=IUDTlvagjJA</u>
- OpenAL Example
 - o <u>https://www.youtube.com/watch?v=tY9DhuEe1WY</u>
- Google Chrome Omnitone
 - <u>http://googlechrome.github.io/omnitone</u>
- My Research Work
 - <u>https://ccrma.stanford.edu/~juhan/threedee.html</u>

Reverberation

- Acoustic phenomenon when a sound source is played in a room
 - Thousands of echoes are reflected against wall, ceiling and floors
 - The patterns are determined by the volume and geometry of the room and materials on the surfaces
 - We can recognize the geometry and composition of the room from the sound
 - They provide different (often better) feelings of the sound

Room Impulse Response

- Room reverberation is characterized by its impulse response (IR)
- The room IR is composed of three parts
 - Direct path
 - Early reflections: convey a sense of the room geometry and size
 - Late-field reverberation: high echo density like noise, determined by room size and materials

• RT60

Room Impulse Response

• Energy Envelope and Spectrogram

Artificial Reverberation

- Convolution reverb
 - Measure the impulse response of a room
 - Convolve input with the measured IR
- Mechanical reverb
 - Use metal plate and spring

- Delay-based reverb
 - Early reflections: feed-forward delayline
 - Late-field reverb: allpass/comb filter, feedback delay networks (FDN)
 - "Programmable" reverberation

Delay-based Reverb

- Schroeder model
 - Cascade of allpass-comb filters
 - Mutually prime number for delay lengths

• Variations

- Feedback Delay Networks
 - Mixing matrix creates "good spreading" of delayed outputs
 - Chosen to be orthonormal (unitary matrix)
 - The lengths of delaylines are chosen to be mutually prime number
 - Should generate a white noise in lossless mode
 - T60 is controlled by the loop gains

Feedback Delay Networks

Measuring Impulse Response

- Measurement Model
 - Assume the system as linear time-invariant
 - Use a test signal and the output to derive the impulse response

• Using a sine sweep: based on the convolution theorem

$$\hat{h}(t) = FFT^{-1} \{ \frac{FFT\{r(t)\}}{FFT\{s(t)\} + \varepsilon(f)} \}$$

Measuring HRTFs

Measuring Room IRs

- Open AIR
 - o <u>http://www.openairlib.net/</u>
- Aachen Impulse Response Database
 - <u>http://www.iks.rwth-aachen.de/en/research/tools-</u> <u>downloads/databases/aachen-impulse-response-database/</u>

Convolution by FFT

- Direct convolution in time domain is computationally expensive
 - It has $O(n^2)$ in complexity
 - Especially, when the length of IR is long (e.g. room IR)
- FFT Convolution
 - Using Convolution Theorem: $x(n) * h(n) \leftrightarrow Y(k) = H(k)X(k)$
 - FFT has $O(nlog_2n)$ and convolution in frequency O(n) in complexity
- However, the issue is latency when the IR is long. How can we implement it in real-time reverb?
 - Solution: Partitioned Convolution
 - <u>https://webaudio.github.io/web-audio-api/convolution.html</u>

References

- Reverberation using Feedback Delay Network
 - <u>https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html</u>
- Impulse Response Measurement
 - <u>http://pcfarina.eng.unipr.it/Public/Papers/226-AES122.pdf</u>